DEUS e Seus Dados, PT 1.1

de Stephen W. Hawking

Esta palestra é sobre se podemos prever o futuro ou se ele é arbitrário e aleatório. Na antiguidade, o mundo deve ter parecido razoavelmente arbitrário. Desastres como enchentes ou doenças devem ter se parecido a acontecimentos sem aviso ou razão aparente. Pessoas primitivas atribuíram tais fenômenos naturais a um panteão de deuses e deusas, que comportavam-se de forma caprichosa e mágica. Não havia meio de prever o que eles fariam, e a única esperança era ganhar favores em troca de presentes ou ações. Muitas pessoas ainda assumem parcialmente esta crença, e tentam fazer um pacto com a sorte. Elas se oferecem a fazer certas coisas, se ganharem uma nota A em um curso, ou passarem no seu teste de direção.

Gradualmente, entretanto, as pessoas devem ter notado certas regularidades no comportamento da natureza. Estas regularidades eram muito óbvias no movimento dos corpos celestes através do céu. Então a astronomia foi a primeira ciência a ser desenvolvida. Ela foi posta sobre uma base matemática firme por Newton, mais de 300 anos atrás, e ainda usamos a sua teoria da gravidade para prever o movimento de quase todos os corpos celestes. Seguindo o exemplo da astronomia, foi descoberto que outros fenômenos naturais também obedeciam leis científicas definidas. Isto levou à idéia do determinismo científico, que parece ter sido expressa publicamente pela primeira vez pelo cientista francês Laplace. Gostaria de citar para vocês as palavras originais de Laplace, então pedi a um amigo para procurá-las. Elas estão em francês, é claro, não que eu pense que isto seria algum problema para esta assistência. Mas o problema é que Laplace era como Prewst, pois escrevia frases de extensão e complexidade incomuns. Então decidi parafrasear as citações. Com efeito, o que ele disse foi que, se em um dado momento, soubermos as posições e as velocidades de todas as partículas no universo, então poderíamos calcular o seu comportamento em qualquer outro tempo, no passado ou no futuro. Há uma história, provavelmente apócrifa, de que quando Laplace foi perguntado por Napoleão sobre como Deus se encaixava neste sistema, ele respondeu, ‘Senhor, eu não precisei desta hipótese.’ Não acho que Laplace estivesse afirmando que Deus não existisse. Somente que ele não intervém para quebrar as leis da Ciência. Esta deve ser a posição de todo cientista. Uma lei científica não é uma lei científica se ela somente se aplica quando algum ser sobrenatural decide deixar as coisas funcionarem e não intervir.

A idéia de que o estado do universo em um dado momento determina o estado em todos os outros tempos, sempre foi um princípio central da ciência, desde o tempo de Laplace. Ela implica que podemos prever o futuro, ao menos em princípio.Na prática, entretanto, nossa habilidade para prever o futuro é severamente limitada pela complexidade das equações, e o fato de que elas frequentemente apresentam uma propriedade chamada caos. Como os que viram Jurassic Park sabem, isto significa que um pequeno distúrbio em um lugar pode causar uma grande mudança em outro. Uma borboleta batendo suas asas pode provocar chuva no Central Park, Nova Iorque. O problema é que o fenômeno não é reproduzível. Da próxima vez que a borboleta bater as suas asas, uma porção de outras coisas serão diferentes, que também influenciarão o tempo. É por isto que as previsões do tempo são tão imprecisas.

Apesar destas dificuldades práticas, o determinismo científico permaneceu o dogma oficial ao longo do século XIX. Entretanto, no século XX, houve dois avanços que mostram que a visão de Laplace, de uma previsão completa do futuro, não pode ser alcançada. O primeiro destes avanços foi o que é chamado de mecânica quântica. Ela foi apresentada pela primeira vez em 1900, pelo físico alemão Max Planck, como uma hipótese ad hoc, para resolver um notável paradoxo. De acordo com as ideias clássicas do século XIX, que vinham de Laplace, um corpo quente, como um pedaço de metal vermelho e quente, deveria liberar radiação.Ele perderia energia em ondas de rádio, infra-vermelho, luz visível, ultravioleta, raios x, e raios gama, todos à mesma taxa. Isto não somente significaria que todos morreríamos de câncer de pele, mas também que tudo no universo estaria à mesma temperatura, o que é claramente falso. Entretanto, Planck mostrou que se poderia evitar este desastre se se desistisse da ideia de que a quantidade de radiação poderia ter qualquer valor, e disse, ao contrário, que a radiação vinha somente em pacotes ou quanta de um certo tamanho. É um pouco como dizer que você não pode comprar açúcar no supermercado em qualquer quantidade, mas somente em pacotes de um quilograma. A energia nos pacotes ou quanta é maior para raios ultravioleta e raios x. É por isto que não sofremos queimaduras de um copo de café.

Planck considerou a ideia dos quanta somente como um truque matemático, não tendo nenhuma realidade física, o que quer que isto signifique. Entretanto, os físicos começaram a encontrar outros comportamentos que poderiam ser explicados somente em termos de quantidades tendo valor discretos, ou quantizados, ao invés de continuamente variáveis. Por exemplo, seria descoberto que partículas elementares se comportavam como peões, girando ao redor de um eixo. Mas a velocidade de giro (spin) não podia ter qualquer valor. Ele tinha que ser algum múltiplo de uma unidade básica. Porque esta unidade é muito pequena, não se nota que um pião normal na verdade desacelera em uma rápida sequência de passos discretos, ao invés de um processo contínuo. Mas para peões tão pequenos quanto átomos, a natureza discreta do spin é muito importante.

Algum tempo se passou antes que as pessoas percebessem as implicações deste comportamento quântico para o determinismo. Foi somente em 1926 que Werner Heisenberg, outro físico alemão, afirmou que não se poderia medir tanto a posição quanto a velocidade de uma partícula com exatidão. Para ver onde está a partícula, deve-se incidir luz sobre ela. Mas, pelo trabalho de Planck, não se pode usar uma quantidade de luz arbitrariamente pequena.Deve-se utilizar ao menos um quantum. Isto causará um distúrbio na partícula e mudar a sua velocidade de uma maneira que não pode ser prevista. Para medir a posição da partícula de forma acurada, você terá que usar luz de pequeno comprimento de onda, como ultravioleta, raios x, ou raios gama. Mas, novamente, de acordo com o trabalho de Planck, os quanta destas formas de luz têm energias maiores do que a da luz visível. Então elas perturbarão mais a velocidade da partícula. É uma situação sem vitória possível: quanto mais acuradamente se tenta medir a posição da partícula, menos acuradamente se pode saber a velocidade, e vice-versa. Isto é resumido no Princípio da Incerteza que Heisenberg formulou; a incerteza na posição de uma partícula vezes a incerteza na sua velocidade é sempre maior do que uma quantidade chamada constante de Planck, dividida pela massa da partícula.

A visão de Laplace do determinismo científico envolvia saber as posições e velocidades das partículas no universo, em um instante de tempo. Logo, ela foi seriamente minada pelo princípio da Incerteza de Heisenberg. Como se poderia prever o futuro, quando não se poderiam medir precisamente tanto as posições quanto as velocidades das partículas no presente? Não importa a potência do seu computador, se você entrar com dados ruins, você terá previsões ruins na saída.

Einstein estava muito descontente com esta aparente aleatoriedade na natureza. Seus pontos de vista foram resumidos em sua frase famosa, ‘Deus não joga dados’. Parece que ele sentiu que a incerteza era somente provisória: mas havia uma realidade subjacente, na qual as partículas teriam posições e velocidades bem definidas, e evoluiriam de acordo com leis determinísticas, no espírito de Laplace. Esta realidade poderia ser conhecida para Deus, mas a natureza quântica da luz nos impediria de ver, a não ser em espelho e de modo confuso.

A visão de Einstein era o que chamaríamos agora de teoria de variável escondida. Teorias de variável escondida podem parecer a maneira mais óbvia de incorporar o Princípio da Incerteza na física. Elas formam a base do quadro mental do universo assumido por muitos cientistas e quase todos os filósofos da ciência. Mas estas teorias de variável escondida podem estar erradas. O físico britânico John Bell, que morreu recentemente, inventou um teste experimental que distinguiria teorias de variável escondida. Quando o experimento foi cuidadosamente executado, os resultados foram inconsistentes com variáveis escondidas. Portanto parece que mesmo Deus é limitado pelo Princípio da Incerteza, e não pode saber tanto a posição quanto a velocidade de uma partícula. Então Deus realmente joga dados com o universo. Todas as evidências sugerem que ele é um jogador inveterado, que joga dados em todas as ocasiões possíveis.

Outros cientistas foram muito mais rápidos do que Einstein para modificar a visão clássica do determinismo do século XIX. Uma nova teoria, chamada mecânica quântica, foi apresentada por Heisenberg, o austríaco Erwin Schroedinger, e o físico britânico Paul Dirac. Dirac antecedeu o meu predecessor como Professor Lucasiano em Cambridge. Ainda que a mecânica quântica tenha estado por aí por quase 70 anos, ela geralmente ainda não é entendida ou apreciada mesmo por aqueles que a usam para fazer cálculos. Mas isto deveria nos preocupar a todos, porque é um quadro completamente diferente do universo físico, e da realidade mesma. Na mecânica quântica, as partículas não têm posições e velocidades bem definidas.Ao contrário, elas são representadas pelo que é chamado função de onda. Trata-se um número em cada ponto do espaço. A amplitude da função de onda dá a probabilidade de que a partícula seja achada naquela posição. A taxa com a qual a função de onda varia de ponto a ponto dá a velocidade da partícula. Isto indicará que a incerteza na posição é pequena. Mas a função de onda variará muito rapidamente perto do pico, aumentado de um lado, diminuindo do outro. Portanto a incerteza na velocidade será grande. Similarmente, pode-se ter funções de onda onde a incerteza na velocidade é pequena, mas a incerteza na posição é grande.

A função de onda contém tudo que se pode saber sobre a partícula, tanto sua posição quanto sua velocidade. Se sabe-se a função de onda em um instante, então seus valores em outros tempos são determinados pelo que é chamado de equação de Schroedinger. Portanto, ainda se tem um tipo de determinismo, mas não é do tipo que Laplace vislumbrou. Ao invés de ser capaz de prever as posições e velocidades das partículas, tudo o que podemos prever é a função de onda. Isto significa que podemos prever somente a metade do que poderíamos, de acordo com a visão clássica do século XIX.

Ainda que a mecânica quântica leve à incerteza, quando tentamos prever tanto a posição quanto a velocidade, ela ainda nos permite prever, com certeza, uma combinação de posição e velocidade. Entretanto, mesmo este grau de certeza parece estar ameaçado pelos mais recentes avanços. O problema surge porque a gravidade pode deformar tanto o espaço-tempo que podem haver regiões que não observamos.

Curiosamente, o próprio Laplace escreveu um artigo em 1779 sobre como algumas estrelas poderiam ter um campo gravitacional tão forte que a luz não pudesse escapar, mas seria arrastada de volta à estrela. Ele até calculou que uma estrela com a mesma densidade do sol, mas duzentas e cinquenta vezes o seu tamanho, teria esta propriedade. Mas ainda que Laplace possa não ter percebido, a mesma ideia tinha sido apresentada 16 anos antes por um homem de Cambridge, John Mitchell, em um artigo na Philosofical Transactions of the Royal Society. Tanto Mitchell quanto Laplace pensaram na luz como sendo constituída de partículas, parecidas com balas de canhão, que poderiam ser desaceleradas pela gravidade, e forçadas a cair de volta na estrela. Mas um experimento famoso, executado por dois americanos, Michelson e Morley em 1887, mostrou que a luz sempre viaja à velocidade de cento e oitenta e seis mil milhas por segundo, não importando de onde tenha vindo. Como então poderia a gravidade desacelerar a luz, e fazê-la cair de volta?

 

CONTINUA NO PRÓXIMO POST !

Anúncios

, , , , , , , , , , , , ,

  1. Deixe um comentário

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s

%d blogueiros gostam disto: